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ABSTRACT: The most used regression methods in sorption studies to estimate
the isotherm parameters (least squares linearized, ordinary least squares,
Marquardt’s least squares (MLS), and hybrid least squares) and orthogonal
distance regression (ODR) have been compared. Theoretical Langmuir iso-
therms were built from different selected values of qmax and b, and from them
simulated isotherms were generated by introducing a certain error. With the
generated data the corresponding isotherm parameters were estimated by using
the different regression methods and their values were compared to the ones of
the theoretical isotherms. The results of this study show that ODR gives the
most accurate estimates of the isotherm parameters when the theoretical data are
perturbed with a fixed error. When the theoretical data are perturbed with an
error proportional to concentration, ODR gives also accurate estimates, but they
are similar to those obtained with the MLS method.

1. INTRODUCTION
In the past 20 years biosorption processes have been in-
vestigated as an alternative method to the conventional water
treatment technologies for the removal of metal ions1 and
organic pollutants2 from wastewaters. Sorption data provide the
capacity and the selectivity of a sorbent for a given component
(sorbate). Capacity is defined as the number of moles of a
sorbate sorbed per gram of a sorbent and selectivity governs the
feasibility of a separation by sorption. Both capacity and
selectivity affect sorption equilibrium achievement. Therefore,
accuracy in the description of the equilibrium isotherms is of
great importance for the simulation and the design of sorption
processes.
In order to obtain a sorption isotherm, the remaining sorbate

concentration in solution at equilibrium (Ce) is determined
experimentally by chemical analysis and the amount of sorbate
sorbed (qe) is determined by the difference from the sorbate
initial concentration (C0) also determined experimentally.
Therefore, Ce and qe are affected by the measurement errors.
In most of the sorption studies reported in literature authors

use some of the available isotherm models (Langmuir,
Freundlich, and Redlich-Peterson)3 and calculate the isotherm
parameters by using regression methods.4−8 In general, authors
use different function errors and make their decision on the
model which best fit the experimental data by the comparison
of R2 (linear regression) or sum square residuals (SSR)
(nonlinear regression) or others.
Nevertheless, the use of least-squares regression involves the

assumption that the independent variable (Ce) is well-known
with no error associated and as said before this variable is
determined experimentally and therefore it may contain an
error. Therefore, the magnitude of the errors made in the
measurement and determination of both variables (Ce and qe)

and the regression method used affect the isotherm parameters
determination.
When the absence of error in x variable cannot be guaranteed,

other regression methods such as orthogonal distance regression
(ODR) should be used.9

The main objective of the present study is to determine
whether the orthogonal distance regression is a more suitable
method than the other methods to determine the isotherm
parameters. For this purpose, the Langmuir isotherm, one of
the most used models in biosorption studies, was chosen in
order to investigate the effect of experimental error on the iso-
therm parameters determination with regard to the regression
method used and the number of experimental data. For this
purpose, theoretical isotherms were built from different
selected values of qmax and b and from them different sets of
simulated data (isotherms) were generated by introducing a
certain error. With the generated data the corresponding
isotherm parameters were obtained and compared to the ones
of the theoretical isotherms.

2. METHODS
2.1. Theoretical Isotherm and Simulated Data

Generation. The used theoretical isotherms (Langmuir-type)
have been built from eq 1
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and the following reference values of qmax (5, 7, 9, 11, 13, and 15)
and of b values (0.5, 2, 4, 6, and 12).
Cei values within the range (0.5−20) were chosen to generate

experimental data sets.
In Figure 1, the different steps to generate a set of simulated

data for a chosen pair of qmax and b values are described.
The first step (step 1) consisted on choosing a pair values

qmax and b from the above indicated reference values. Then, qei
was calculated for each Cei of the chosen values by using the
isotherm eq 1.

In step 2 the initial concentration C0i corresponding to the
qei and Cei were calculated by using the equation

= +C C
W
V

qi i i0 e e (2)

where W is the sorbent mass and V is the volume of the
solution. For this study W and V values were 0.2 and 0.15,
respectively.
Step 3 consisted in introducing errors on C0i and Cei data by

following normal distributions of mean zero and variance σ to
obtain perturbed data of C0i and Cei (Cp0i and Cpei).

Figure 1. Schema of a set of simulated data generation. Example for a chosen pair of qmax = 9 and b = 2 values. Perturbation: fixed error.

Figure 2. Box plots for the error in estimation of qmax and b by different methods of regression of all simulated adsorption equilibrium data. Isotherm
data points: (a) 7, (b) 10, and (c) 13 points. Perturbation: fixed error.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je201070u | J. Chem. Eng.Data 2012, 57, 490−499491



The perturbed data Cp0i and Cpei were used to calculate the
perturbed qpei through the equation

= −q
V
W

C C( )i i ipe p0 pe (3)

and obtain the set of simulated data (step 4).

Two different ways of introducing errors were used in step 3:
(i) a fixed error and (ii) an independent error proportional to
C0i and Cei. The introduced fixed error follows a normal dis-
tribution of mean zero and variance 0.05; the proportional error
follows a normal distribution of mean zero and variance 5 % for
each C0i and Cei.

Figure 3. Box plots for the error in estimation of qmax and b by different methods of regression of all simulated adsorption equilibrium data. Isotherm
data points: (a) 7, (b) 10, and (c) 13 points. Perturbation: error proportional to concentration.

Table 1. Statistics of Errors in Estimation of qmax and b by Different Methods of Regressiona

qmax calculated values b calculated values

mean std median iqr mean std median iqr

5 % constant error (13 equilibrium data)
ODR −3.03 × 10−5 4.03 × 10−3 −2.81 × 10−5 4.18 × 10−3 4.31 × 10−3 6.37 × 10−2 6.44 × 10−4 6.44 × 10−2

LSL −3.11 × 10−5 5.31 × 10−3 −1.08 × 10−5 5.80 × 10−3 1.71 × 10−2 7.98 × 10−1 −7.27 × 10−4 1.02 × 10−1

OLS −2.99 × 10−4 5.29 × 10−3 −1.62 × 10−4 6.10 × 10−3 1.26 × 10−2 9.63 × 10−2 2.16 × 10−3 1.03 × 10−1

HLS −3.53 × 10−4 6.87 × 10−3 −1.76 × 10−4 7.05 × 10−3 1.32 × 10−2 1.04 × 10−1 1.71 × 10−3 1.21 × 10−1

MLS −4.47 × 10−4 1.03 × 10−2 −2.24 × 10−4 8.11 × 10−3 1.43 × 10−2 1.13 × 10−1 1.21 × 10−3 1.42 × 10−1

5 % constant error (10 equilibrium data)
ODR 1.02 × 10−6 4.53 × 10−3 3.82 × 10−6 4.76 × 10−3 4.35 × 10−3 6.60 × 10−2 4.66 × 10−4 6.71 × 10−2

LSL 1.56 × 10−5 5.81 × 10−3 2.65 × 10−7 6.42 × 10−3 2.04 × 10−2 3.59 × 10−1 −6.57 × 10−4 1.03 × 10−1

OLS −3.21 × 10−4 5.85 × 10−3 −2.08 × 10−4 6.86 × 10−3 1.30 × 10−2 9.57 × 10−2 2.59 × 10−3 1.02 × 10−1

HLS −3.65 × 10−4 7.54 × 10−3 −2.31 × 10−4 7.96 × 10−3 1.37 × 10−2 1.03 × 10−1 2.57 × 10−3 1.20 × 10−1

MLS −4.60 × 10−4 1.13 × 10−2 −2.82 × 10−4 9.23 × 10−3 1.48 × 10−2 1.13 × 10−1 2.70 × 10−3 1.41 × 10−1

5 % constant error (7 equilibrium data)
ODR 4.51 × 10−5 5.28 × 10−3 3.47 × 10−5 5.58 × 10−3 4.86 × 10−3 7.58 × 10−2 7.63 × 10−4 8.14 × 10−2

LSL 3.14 × 10−5 6.71 × 10−3 2.03 × 10−5 7.26 × 10−3 1.15 × 10−2 1.47 −8.25 × 10−4 1.20 × 10−1

OLS −2.26 × 10−4 6.81 × 10−3 −5.89 × 10−5 7.73 × 10−3 1.27 × 10−2 1.08 × 10−1 1.19 × 10−3 1.22 × 10−1

HLS −3.03 × 10−4 8.95 × 10−3 −7.13 × 10−5 8.78 × 10−3 1.36 × 10−2 1.16 × 10−1 1.04 × 10−3 1.42 × 10−1

MLS −4.45 × 10−4 1.29 × 10−2 −9.93 × 10−5 9.91 × 10−3 1.50 × 10−2 1.27 × 10−1 2.32 × 10−4 1.62 × 10−1

aPerturbation: fixed error.
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Figure 4. Box plot for the error in estimation of qmax and b as a function of b values for different methods of regression. Perturbation: fixed error;
number of isotherm data points: 7; qmax values: (a) 5, (b) 9, and (c) 15.

Table 2. Statistics of Errors in Estimation of qmax and b by Different Methods of Regressiona

qmax calculated values calculated values

mean std median iqr mean std median iqr

5 % proportional error (13 equilibrium data)
ODR −5.35 × 10−3 2.50 × 10−2 −4.62 × 10−3 2.90 × 10−2 3.05 × 10−2 1.78 × 10−1 1.20 × 10−2 1.64 × 10−1

LSL −3.27 × 10−3 5.50 × 10−2 −2.81 × 10−3 6.77 × 10−2 −3.42 × 10−1 4.63 × 101 −1.70 × 10−1 7.58 × 10−1

OLS 9.28 × 10−4 2.80 × 10−2 1.67 × 10−4 3.04 × 10−2 1.87 × 10−2 1.87 × 10−1 1.65 × 10−4 1.92 × 10−1

HLS −2.69 × 10−3 2.57 × 10−2 −2.70 × 10−3 2.93 × 10−2 3.19 × 10−2 1.86 × 10−1 1.03 × 10−2 1.74 × 10−1

MLS −6.05 × 10−3 2.45 × 10−2 −5.30 × 10−3 2.85 × 10−2 4.49 × 10−2 1.92 × 10−1 1.86 × 10−2 1.62 × 10−1

5 % proportional error (10 equilibrium data)
ODR −4.91 × 10−3 3.05 × 10−2 −4.28 × 10−3 3.50 × 10−2 3.32 × 10−2 2.01 × 10−1 1.02 × 10−2 1.83 × 10−1

LSL −1.71 × 10−3 6.30 × 10−2 −1.81 × 10−3 7.67 × 10−2 −4.32 × 10−1 5.36 × 101 −1.64 × 10−1 7.39 × 10−1

OLS 1.15 × 10−3 3.43 × 10−2 1.20 × 10−4 3.70 × 10−2 2.20 × 10−2 2.08 × 10−1 2.92 × 10−4 2.13 × 10−1

HLS −2.39 × 10−3 3.15 × 10−2 −2.40 × 10−3 3.55 × 10−2 3.37 × 10−2 2.05 × 10−1 8.34 × 10−3 1.92 × 10−1

MLS −5.69 × 10−3 2.98 × 10−2 −4.90 × 10−3 3.44 × 10−2 4.57 × 10−2 2.11 × 10−1 1.59 × 10−2 1.79 × 10−1

5 % proportional error (7 equilibrium data)
ODR −3.60 × 10−3 3.65 × 10−2 −3.00 × 10−3 4.25 × 10−2 3.36 × 10−2 2.19 × 10−1 5.91 × 10−3 2.00 × 10−1

LSL 5.92 × 10−4 7.02 × 10−2 −2.33 × 10−4 8.56 × 10−2 −4.30 × 10−1 5.35 × 101 −1.84 × 10−1 7.50 × 10−1

OLS 2.63 × 10−3 4.16 × 10−2 1.27 × 10−3 4.53 × 10−2 2.23 × 10−2 2.31 × 10−1 −3.32 × 10−3 2.36 × 10−1

HLS −9.62 × 10−4 3.80 × 10−2 −1.21 × 10−3 4.32 × 10−2 3.29 × 10−2 2.27 × 10−1 4.24 × 10−3 2.11 × 10−1

MLS −4.35 × 10−3 3.57 × 10−2 −3.74 × 10−3 4.18 × 10−2 4.45 × 10−2 2.34 × 10−1 1.07 × 10−2 1.96 × 10−1

aPerturbation: error proportional to concentration.
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In the example of Figure 1, the selected isotherm parameters
were qmax = 9 and b = 2 and a fixed error was applied.
By following the described procedure in Figure 1, 1000 sets

of simulated data were generated for each pair of qmax and b.
The influence of the value of qmax and b on each other has

been investigated by fixing a qmax value and varying the value of
b and vice versa. The influence of number of data points on the
regression model fit was also investigated. For this purpose,
isotherms simulations were done by using 7 (0.5, 1, 3, 4, 7, 15,
and 20), 10 (0.5, 1, 1.5, 2.5, 3.5, 5, 7, 11, 15, and 20), and 13
(0.5, 1, 1.5, 2.5, 3.5, 4.25, 5, 7, 9, 11, 13, 15, and 20) equilibrium
points.

2.2. Regression Analysis. In the single-component
isotherm studies, the objective consists of adjusting the
parameters of a model function to best fit a data set. A simple
data set consists of n points (xi, yi), i = 1, ..., n, where xi(Ce) is
an independent variable and Yi(qe) is a dependent variable
whose value is found by observation. The model function has
the form

= β + εY f x( , )i i i (4)

where the adjustable parameters (qmax and b) are held in the
vector β and ε is the experimental error.

Figure 5. Box plot for the error in estimation of qmax and b as a function of b values for different methods of regression. Perturbation: error
proportional to concentration; number of isotherm data points: 7; qmax values: (a) 5, (b) 9, and (c) 15.

Table 3. Interquartile Ranges for % Error in Estimation of
qmax and b for a Fixed qmax

a

interquartile ranges

% error in qmax % error in b

model qmax 9, b 0.5 qmax 9, b 12 qmax 9, b 0.5 qmax 9, b 12

ODR 0.0099 0.0044 0.0491 0.1462
OLS 0.0127 0.0054 0.0605 0.2003
MLS 0.0328 0.0057 0.1413 0.2125

aPerturbation: fixed error.

Table 4. Interquartile Ranges for % Error in Estimation of
qmax and b for a Fixed qmax

a

interquartile ranges

% error in qmax % error in b

model qmax 9, b 0.5 qmax 9, b 12 qmax 9, b 0.5 qmax 9, b 12

ODR 0.0643 0.0345 0.2030 0.3986
OLS 0.0830 0.0354 0.3280 0.4045
MLS 0.0615 0.0344 0.1900 0.4111

aPerturbation: error proportional to concentration.
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The most used method to determine the isotherm param-
eters is the least-squares method. The least-squares regression
makes various assumptions about errors in a regression model.
The basic assumptions are9

(i) The error, ε, is uncorrelated with x, the independence
assumption.

(ii) The error has the same variance (σ2) across the different
levels of x, i.e., the variance of ε is homoskedastic and not
heteroskedastic.

(iii) The values of ε are independent of each other, i.e., not
autocorrelated or serially correlated.

(iv) The error is normally distributed.
(v) The independent variable x is fixed, i.e., there is not

measured error in x.

If these assumptions are met, then the estimates of the
regression constant and the regression coefficients are unbiased
and efficient. Violation of one of more of these assumptions
may lead to biased and/or inefficient estimates.9,10

Assumption (v) cannot be met; x is determined experi-
mentally by chemical analysis which involves a series of operations
like pipetting, dilution, standards preparation, calibration of the
instruments, etc. All of these operations result in sources of error.
Taking into account that Yi is calculated by using eq 3, the
variance of Yi is dependent on Xi; therefore, assumption (ii) is not
met either.

Figure 6. Box plots for the error in estimation of qmax and b as a function of qmax values for different methods of regression. Perturbation: fixed error;
number of isotherm data points: 7; b values: (a) 0.5, (b) 4.0, and (c) 12.0.

Table 5. Interquartile Ranges for % Error in Estimation of
qmax and b for a Fixed ba

interquartile ranges

% error in qmax % error in b

model b 4, qmax 5 b 4, qmax 15 b 4, qmax 5 b 4, qmax 15

ODR 0.0091 0.0035 0.1189 0.0730
OLS 0.0097 0.0061 0.1499 0.1195
MLS 0.0110 0.0076 0.1693 0.1341

aPerturbation: fixed error.

Table 6. Interquartile Ranges for % Error in Estimation of
qmax and b for a Fixed ba

interquartile ranges

% error in qmax % error in b

model b 4, qmax 5 b 4, qmax 15 b 4, qmax 5 b 4, qmax 15

ODR 0.0596 0.0328 0.2798 0.1716

OLS 0.0629 0.0329 0.3044 0.1841

MLS 0.0591 0.0325 0.2765 0.1673
aPerturbation: error proportional to concentration.
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When assumption (v) is not met, the problem is

= β + ε

= + δ

Y f x

X x

( , )i i i

i i i (5)

where δi is the experimental error in xi determination. There-
fore, in order to obtain a better estimation of the parameters
errors I both X and Y must be considered.
When assumption (ii) is not met some corrections must be

made by giving some weights to correct the differences in the
variances.
This fact leads the authors to use different error functions to

estimate the isotherm parameters. The most used error
functions are described in the following sections.
2.2.1. Least-Squares Linearized (LSL). One procedure

usually used for obtaining isotherm parameters is the
linearization of the isotherm equation and the application of
a method of linear regression. Four of the linearized forms of
the Langmuir isotherm are11−13

= −
q

C
bq bqe

e
max e (6)

where qe and Ce/qe are not independent.

= +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q bq C q

1 1 1 1

e max e max (7)

where qe and qe/Ce are not independent. In eqs 6 and 7, the
abscissa is not free of error therefore they violate assumption
(v) in the method of least-squares. The presence of qe in
both dependent and independent variables leads to spurious
correlation.

= +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q bq C q

1 1 1 1

e max e max (8)

This linearized form leads to clumping of data points near
origin. It is very sensitive to low values of Ce and/or qe.

= +
C
q q

C
bq

1 1e

e max
e

max (9)

Ce/qe and Ce are not independent. The presence of Ce in both
dependent and independent variables leads to spurious cor-
relation. In all the above-described linearized equations, hypo-
theses (ii), (iv), and (v) are usually not true.

Figure 7. Box plots for the error in estimation of qmax and b as a function of qmax values for different methods of regression. Perturbation: error
proportional to concentration; number of isotherm data points: 7; b values: (a) 0.5, (b) 4.0, and (c) 12.0.
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In this work eq 9 has been chosen because it is one of the
most used in literature. Therefore the function error to be
minimized is

∑ −
=

⎛

⎝
⎜⎜⎜
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
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⎞
⎠
⎟⎟

⎞

⎠
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C
q

C
q

i

n
i

i

i

i1

e

e exp

e

e calc

2

(10)

The use of the linearization procedure provokes the
alteration of the original data, and therefore, the obtained fit
with eq 10 could not be the optimum for the original
experimental data.13,14 At present, the use of this method is not
justified as adequate software to fit experimental data to a
nonlinear model is easily available.
2.2.2. Ordinary Least-Squares (OLS). When the isotherm

equation is not linearized, a widely used error function is the
ordinary least-squares (OLS) method. This method consists on
minimizing the sum of square errors.

∑ −
=

q q( )
i

n

i i
1

e ,calc e ,exp
2

(11)

In general, the parameters obtained with this error function
fit better the data corresponding to the high values of the
concentration range.6 This error function will provide the best
fit when all the assumptions described above are met.
2.2.3. Marquardt’s Least-Squares (MLS). This error

function minimizes the sum of the relative error between
experimental and calculated data. It has been modified to
include the number of degrees of freedom of the system.

∑
−

−

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟n p

q q

q
100

1

i

n
i i

i1

e ,exp e ,calc

e ,exp

2

(12)

where n is the number of data points and p is the number of
parameters.15

2.2.4. Hybrid Least-Squares (HLS). This error function was
derived by Porter et al.15 with the aim to improve the fit of OLS
at low concentrations. In this function, each sum of the square
of errors is divided by the experimental solid-phase
concentration qei,exp. It also includes a divisor as a term of the
function for the number of degrees of freedom of the system.

∑
−

−

=n p

q q

q
100 ( )

i

n
i i

i1

e ,exp e ,calc
2

e ,exp (13)

This error function and the previously described (MLS) are
two forms of introducing weights to compensate the effects of
the nonhomogeneity of the variance (σ2).
The above-described error functions (LSL, OLS, MLS, and

HLS) have been used in sorption studies to evaluate and
compare the fit of the experimental data to different isotherms
models.4−8,15−18

2.2.5. Orthogonal Distance Regression (ODR). The
previously described error functions assume that the values of
Cei are exactly known and qei are observed with error. And it is
under this assumption that those error functions provide the
optimum solution.
Nevertheless, the real situation is that Cei and C0i are deter-

mined experimentally by chemical analysis, therefore should be
observed with error. On the other hand qei is calculated by eq 3

and thus, both Cei and C0i errors contribute to qei error.
Therefore, errors in both Ce and qe must be taken into account.
The ODR error function takes into account this aspect and

provides the best fit by minimization of the sum of square
relative errors with regard to both Ce and qe.
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2
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2

(14)

This error function was used by El-Khaiary9 when modeling
sorption data.

2.3. Numerical Calculations. Linear, nonlinear, and
orthogonal distance regression computations were carried out
using Matlab R2008b. Especifficaly the optimization has been
performed by applying the Generalized Reduced Gradient method
and using for this purpose the library GRG2.19 Statistics Toolbox
of Matlab has been used to generate the perturbations and the
statistics analysis.

3. RESULTS
The values obtained from the simulated experimental data with
a fixed error (N(0, 0.05)) and with ± 5 % error proportional to
concentration were compared to the qmax and b theoretical
values and the % of error in qmax and b was calculated

=
−

q
q q

q
% error in max

max,theo max,calc

max,theo (15)

=
−

b
b b

b
% error in theo calc

theo (16)

The statistics of the calculated errors by using different error
functions (ODR, LSL, OLS, HLS, and MLS) are summarized in
Tables 1 and 2. In the same tables, results corresponding to
three different numbers of considered equilibrium data (13, 10,
and 7) are also presented.
To describe the distribution of the errors, box plots were

used. A box plot provides an excellent visual summary of many
important aspects of a values distribution. The line across the
box represents the median, whereas the bottom and top of the
box show the location of the first and third quartiles (Q1 and Q3).
The whiskers are the lines that extent from the bottom and top
of the box to the lowest and highest observations inside the
region defined by Q1−1.5(Q3−Q1) and Q3 + 1.5 (Q3−Q1).20
The box itself contains the middle 50 % of the data. If the
median is not equidistant from the top and the bottom of the
box, then the data are skewed. In the literature box plots were
applied to assess the robustness of a model to describe Cr(VI)
kinetics biosorption21 and to test the sensitivity of different
regression methods to experimental errors.9

Box plots for the error in estimation of qmax and b obtained
by different methods of regression for all simulated data from
perturbed data with a fixed error and proportional error are
depicted in Figures 2 and 3, respectively. In both cases, dif-
ferent number of isotherm data points has been considered:
7, 10, and 13.
As seen in Figure 2, the ODR method presents the lowest

variability. This result was expected because ODR method is
the only one who considers there is error in X (it does not meet
assumption (v)) and therefore this method provides efficient
and not biased estimated parameters. When comparing results
obtained by using the other error functions, OLS presents less
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variability than the others because in this case it is assumed that
variance is constant with independence of the different X
values.
As expected, the variability decreases with the increase of

the number of data points independently of the used error
function.
When looking at Table 1, it can be observed that in all the

cases the ODR method present the lowest mean, standard
deviation and interquartile range. Also, the standard deviation
(std) and the interquartile range (iqr) increase when the number
of points decreases.
The distribution of relative error in the determination of qmax

and b is centered as observed in Figure 2. This fact can be
confirmed by the mean (<5 × 10−4) and median (<10−2) values
shown in Table 1. A major variability in b than in qmax deter-
mination can be observed in Figure 2; indeed in b deter-
mination the standard deviation and interquartile range values
are higher (Table 1).
The LSL method presents similar variability to OLS when

looking at Figure 2; nevertheless, LSL method shows a greater
standard deviation than the other methods in b determination
as shown in Table 1.
Figure 3 shows the box plot corresponding to the error in

estimation of qmax and b obtained by different methods of
regression for all simulated data from perturbed data with a
proportional error. As seen, ODR and MLS present the lowest
variability but it is not clear which is the most efficient method.
As said before, ODR method considers there is error in X axis
nevertheless, it does not take into account that in the case of
perturbed data with a proportional error assumption (ii) is not
met. Therefore, in this case, it cannot be guaranteed that ODR
method is the optimum one. MLS cannot also be considered
the optimum one because even though it takes into account
that the data are heteroskedastic it does not consider the errors
in X axis. The variability of these two methods is closely
followed by HLS, then by OLS and more distantly by LSL.
The trend of variability as a function of number of data

points is the same that the observed in Figure 2.
When comparing results shown in Figures 2 and 3, it must be

pointed out that the error in estimation of qmax and b is always
greater when the data were perturbed with a proportional error.
In Table 2, it can be observed that MLS and ODR methods

present similar standard deviation and interquartile range in
qmax determination. In b determination, the lowest standard
deviation is given by ODR and the narrowest interquartile
range by MLS.
Taking into account the results obtained with these two

methods, it can be stated that none of them is outstanding over
the other. Furthermore, variability values provided by HLS and
OLS are not so different.
In order to analyze the effect of the theoretical qmax and b

values chosen to achieve the simulated data and the estimation
of qmax and b obtained by the different methods, as an example,
box-plots for the error in estimation of qmax and b as a function
of b values from perturbed data with a fixed error and
proportional error are shown in Figures 4 and 5, respectively. In
these examples, qmax takes three fixed values (5, 9, and 15) and
the number of data points is 7.
As can be seen in Figure 4 in general, with independence of

the theoretical qmax and the method used, as higher is b the
lower variability is in qmax determination. Conversely, the variability
in b determination increases when increasing the theoretical b
value.

Table 3 shows the interquartile-ranges corresponding to qmax
and b determination for a qmax = 9 and two different values of b
(0.5 and 12), and a fixed error when using ODR, OLS, and
MLS methods. For qmax determination, the interquartile ranges
of ODR are narrower compared to OLS and MLS. From the
results presented in the table it can be pointed out that the
difference between the interquartile ranges values presented by
ODR and the other methods is bigger when the theoretical
values of b are low. In the case of b determination this
difference is not so remarkable.
In Figure 5, the trend in qmax determination is the same as

observed when a fixed error was applied (see Figure 4). That, is,
as higher is b the lower variability is found for qmax. Never-
theless, it must be pointed out that in that case (proportional
error) qmax values are skewed for the lowest b value (0.5) and
become centered as b increases. When comparing the three
methods, OLS presents the highest variability in both qmax and
b determination.
In the case of b determination, in general, it appears that a

great percentage of the values are outliers with a great variation
range (Figure 5a−c). Comparing the three methods, OLS
presents the highest variability for the lowest b value (0.5)
nevertheless the three methods tend to show the same variabi-
lity when increasing the theoretical b value. This observation is
corroborated by the interquartile-ranges values presented in
Table 4.
In Figures 6 and 7, box-plots for the error in estimation of

qmax and b as a function of qmax values from perturbed data with
a fixed error and proportional error are shown. As observed in
both figures, the trend of the variability in both qmax and b
determination is to decrease when increasing the qmax value.
Figure 6 shows that in general, the errors distribution is

centered with independence of the qmax and b values and the
method used. The corresponding interquartile ranges are pre-
sented in Table 5 where it can be observed that the narrowest
interquartile-range values are provided by ODR method. It can
also be observed that difference of the interquartile-ranges
between ODR and the other methods is more evident when
qmax is 15.
In Figure 7, it can be observed that for low qmax the values of

errors distribution for the estimation of qmax is skewed toward
low values (Figure 7, panels a and b). This is not the case of
Figure.7 c where the errors distribution is quite centered for
ODR and MLS and skewed to high values for OLS. For b esti-
mation, in most of the cases the distribution is quite centered
but a general trend is not observed. In the case of b 12, outliers
with great positive values are observed for all the methods. The
corresponding interquartile ranges are presented in Table 6. As
observed in the table, when qmax is high the interquartile range
of OLS are similar to the ones of ODR and MLS.

4. CONCLUSIONS
The results of this study show that orthogonal distance regres-
sion (ODR) gives the most accurate estimates of the isotherm
parameters among the different methods when the experimental
data have a fixed error. When the experimental data have a pro-
portional error ODR gives also accurate estimates but they are
similar to the obtained with MLS method.
As expected, an increase of number of data enhances accuracy in

the estimation of isotherm parameters with independence of the
regression method used.
ODR method provides the most accurate estimates of qmax

and b as higher is qmax. Conversely, accuracy in both parameters
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estimation is not favored with the increase of b value. High b
values provide accuracy in qmax estimates while low b values in b
estimates.
As a final conclusion, it is advisible to make an appropriate

scaling of the data in order to obtain the highest accuracy when
using the ODR method.
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